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Abstract

In this paper, we motivate the introduction of multiple feature
streams to cover the gap between the noise-free and the esti-
mated features in the context of Model-Based Feature Enhance-
ment (MBFE) for noise robust speech recognition. Especially at
low local SNR-levels the global MMSE-estimate might not be
optimal and its uncertainty is large. Therefore, it is first shown
how a constrained quadratic optimisation problem can improve
the linear combination weights in the MMSE-formula. Alter-
natively, these weights are then approximated byK Kronecker
deltas. Both approaches are compared by recognition experi-
ments on the Aurora2 task. Also, Multiple Stream MBFE is
validated on the large vocabulary Aurora4 benchmark task. On
the latter, a decrease in average Word Error Rate could be ob-
tained from 37.73% (no enhancement) to 26.13% (single stream
MBFE) and finally, to 24.89% (multiple stream MBFE).

1. Introduction
Model-Based Feature Enhancement (MBFE) has proven to be
a scalable and efficient technique to jointly reduce the interfer-
ing additive and channel noise from a noisy speech utterance
before recognition by an Automatic Speech Recognition (ASR)
system [1]. In this technique, a model combination with a Vec-
tor Taylor Series (VTS) approximation is applied in a front-end
preprocessing step. This considerably reduces the computa-
tional load compared to e.g. JAC [2] or PMC [3], due to the
drop in the required complexity of the models that are adapted.
Because the generated MMSE-estimate of clean speech exhibits
far less mismatch with the acoustic models (that are trainedon
clean speech) than the observed noisy speech, a considerable in-
crease in recognition accuracy is obtained. However, untilnow
the back-end recogniser considered the MMSE-estimate as ifit
was a true clean utterance, while inevitably, in every feature en-
hancement algorithm some residual uncertainty is left. A few
attempts to incorporate information about the uncertaintycan
be found in [4, 5, 6]. In this paper, we motivate the introduction
of multiple feature streams to cover the gap between the true
and the estimated features.

The baseline MBFE-algorithm is briefly reviewed in sec-
tion 2. In section 3, we first explain how the linear combina-
tion weights in the MMSE-formula can be improved by solving
a constrained quadratic optimisation problem. Alternatively,
these weights are then approximated by Kronecker deltas. Ex-
perimental evidence of the increased recognition accuracyof
the resulting system will be given in sections 4 and 5, where

‡ Veronique Stouten is a Research Assistant of the Fund for Scien-
tific Research - Flanders (Belgium) (F.W.O. - Vlaanderen).

recognition results on both the Aurora2 task and the complete
Aurora4 task are presented. Finally, conclusions can be found
in section 6.

2. Baseline MBFE
The main principles of the MBFE-technique are now briefly re-
viewed. First, a shifted HMM-modelλs of the clean speech and
an HMM λn of the noise are combined in the MBFE front-end,
by which an estimate of the noisy speech HMMλx is obtained.
The state-conditional pdfs of clean speechst and noisent are
assumed to be Gaussian mixtures with meansµs

i , µn
j and di-

agonal covariance matricesΣs
i , Σn

j in the cepstral domain, re-
spectively. The non-linearity of the relationship betweenst, nt,
the channelh and the noisy speechxt is approximated by a first
order Vector Taylor Series :
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in which C denotes the DCT-matrix, and the gradients of the
combination functionf(st, nt, h) have the closed form :
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G(i,j) = I − F(i,j) (4)

andI is the identity matrix. The Gaussian pdf ofxt then has a
mean and a covariance matrix :
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The shift (h + δh) of the clean speech HMM is obtained by an
iterative EM-algorithm to jointly remove additive and channel
noise [7], since any linear filtering operation results in a shift in
the cepstral domain. The corresponding update formula is given
by :
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Finally, an MMSE-estimate of the clean speech, given the noisy
observation vectorsxT

1 = (x1, x2, . . . , xT ), is calculated :
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in which (i, j) denotes the combined (speech, noise) state. The
state-conditional estimates are given by:
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The posterior probabilitiesγ(i,j)
t are calculated by the forward-

backward algorithm. However, in our case the latter becomes
trivial due to the use of uniformly weighted ergodic HMMs.
Unlike for the state-conditional estimates, the velocity and ac-
celeration features are used to determine the posterior probabil-
ities. Assuming that the gradientsF andG in the VTS approx-
imation (2) remain constant across the time-interval on which
the deltas are calculated, the values of the first derivativepa-
rameters of the combined HMMλx, are given by :

µ∆x
(i,j) ≈ F(i,j) µ∆s

i + G(i,j) µ∆n
j (10)
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and similar for the second derivatives.

3. Improving the combination weights
Usually, the Gaussians in the acoustic space are sampled at only
one point, namely the one that represents the most likely clean
speech estimate (ŝMMSE

t ) at that time. Since this estimate min-
imises the mean of the squared error, it can be expected to yield
good results. However, especially at low local SNR-levels its
uncertainty is large and this MMSE-estimate might not be opti-
mal [8]. After all, due to the fully connected front-end HMMs,
almost no time constraints are incorporated in calculatingthe
weights in (8). The only temporal information arises from the
dynamic features used in the forward-backward algorithm to
calculate the posterior probabilities. Therefore, it can be ex-
pected that the combination of the state-conditional estimates
ŝ
(i,j)
t with theseγ(i,j)

t could still be improved if more informa-
tion was available. On the other hand, the more detailed back-
end acoustic model can make a more profound choice between
these estimates, based on the larger context in which each frame
occurs. This motivates the next optimisation problem.

3.1. Optimisation problem

For each time instantt, let βt(m),m = 1 . . . (Ms.Mn) be the
sorted states(i, j), obtained by sorting the corresponding poste-
rior probabilitiesγ(i,j)

t in descending order. HereMs andMn

denote the number of speech and noise states inλs andλn, re-
spectively. Since theγ(i,j)

t can be considered as rough estimates
of the optimal combination weights, they give an indicationof
the dominant terms in (8). In the remaining part, onlyM of
these terms are retained. Hence, form = 1 . . . M :

ŝt,m = ŝ
(i,j)
t if (i, j) = βt(m) (12)

Let α = [α1 . . . αM ]
′

be the vector with the (unknown) opti-
mal posterior probabilities in (8) and letS = [ŝt,1 . . . ŝt,M ] be

the matrix with the corresponding sorted state-conditional esti-
mates. For each back-end Gaussianq, α can be calculated by
maximising its log-likelihood at that time instant :

max
α

{−
1

2
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′

(Σq)
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subject to the linear constraints :

αm ≥ 0 for m = 1 . . . M (14)
X

m
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This optimisation is solved with a gradient descent algorithm,
in whichα(0) is initialised to[1/M . . . 1/M ]

′

. In iterationl we
then have :
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”

(16)
with the stepδ chosen to maximise (13) after substituting (16),
subject to the constraints (15). This requiresO(DM2) multi-
plications, with D the dimension of the feature vectors. Since
the optimised clean speech estimateSα is calculated on a trun-
cated version ofS, bothSα and the original MMSE-estimate
ŝMMSE

t , are evaluated in the acoustic model of the recogniser.
At each time instant, only the score of the best matching one is
kept for recognition. Alternatively,̂sMMSE

t can be included inS,
which gave almost no difference in performance.

3.2. Multiple streams of estimates

Instead of using a computationally rather expensive optimisa-
tion, each (or some) of the corners of the polygon can be con-
sidered as a candidate solution. In this case, the unknown op-
timal combination weights are approximated byK Kronecker
deltas. Hence, theK feature streams are obtained by selecting
only the dominant terms in (8). Fork = 1 . . . K :

ŝt,k = ŝ
(i,j)
t if (i, j) = βt(k) (17)

Then, each of theseK feature streams, together with the
MMSE-estimatêsMMSE

t , give rise to(K + 1) streams that are
evaluated in the acoustic model of the recogniser. At each time
instant, the score of the best matching one is kept for recogni-
tion. In this case, only(K + 1)-times more Gaussian evalua-
tions are required in the back-end, which is still feasible since
the number of streams can be kept reasonably small, as will be
shown in section 5.1.

4. Experiments on Aurora2
To illustrate the superior recognition accuracy that is obtained
by implementing these techniques, experiments are conducted
on the Aurora2 speaker independent digit recognition task for
two noise types (subway and car noise) and SNR-levels between
0dB and 20dB.

Features are extracted by the MFCC front-end, comply-
ing to the ETSI ES 201 108 standard without compression.
All results are obtained by enhancing the noisy speech by the
MBFE-algorithm, using front-end models with 128 fully con-
nected Gaussians for the clean speech model and 1 Gaussian for
the noise model. The parameters of both models are obtained
offline for each SNR-level. A channel estimate is calculated
online by the recursive EM-algorithm described in [7]. Front-
end estimates are evaluated by the complex back-end recogni-
tion system, with whole word digit models trained on the clean



speech training database of Aurora2 using the HTK scripts with
default settings. The digit models have 16 emitting states with
20 Gaussians per state, while the silence model has 3 states with
36 Gaussians per state. Also, a one-state short pause model,tied
with the middle state of the silence model, is used.

4.1. Optimal combination weights

In the optimisation problem (3.1),s is truncated toM state-
conditional estimates. Because we neither want to exclude some
of the correct estimates, nor want to incorporate very unlikely
estimates, a trade-off has to be made. We chooseM = 4, be-
cause theγ(i,j)

t for states corresponding tom > 4 are already
quite small. To limit the computational load, only 1 iteration is
done in (16). To allow a fair comparison,K is also set to 4 in
the Multiple Stream experiments.
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Figure 1: Accuracy for reference, SS-MBFE (K = 0), MS-
MBFE (K = 4) and MBFE with optimisation of α (M = 4).

4.2. Results

Recognition results are shown in figure 1 for the subway noise,
and in figure 2 for the car noise condition. Single Stream MBFE
(K = 0) is compared with Multiple Stream MBFE(K = 4)
and MBFE for which the optimisation problem is solved iter-
atively. No significant difference in accuracy is observed be-
tween applying 1 iteration of a gradient descent algorithm on
the one hand and evaluating each of the corners of the poly-
gon (the MS-MBFE case) on the other hand. Hence, from a
computational point of view MS-MBFE is preferable. Note that
the corners of the polygon are valid solutions to the optimisa-
tion problem. Hence, when the gradient descent algorithm has
converged, it will never be inferior to MS-MBFE in the sense
of (13). However, the difference in performance between both
approaches is in any case small.

5. Experiments on Aurora4
Experiments are also conducted on the Aurora4 large vocabu-
lary database, derived from the WSJ0 Wall Street Journal 5k-
word dictation task. In this database, seven different types of
noise are added to the close talking microphone signal: no noise
(set 01), car (set 02), babble (set 03), restaurant (set 04),street
(set 05), airport (set 06) and train (set 07). Test sets 08 through
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Figure 2: Accuracy for reference, SS-MBFE (K = 0), MS-
MBFE (K = 4) and MBFE with optimisation of α (M = 4).

14 are obtained by adding these same noise types to recordings
made with 18 different microphones. For each of the 2x7 test
sets, all 330 utterances (with an SNR-level that ranges from5
dB to 15 dB) are evaluated.

First, the mel-cepstral features are extracted from the
speech signal as explained in [7]. Then, theK feature streams,
together with the global MMSE-estimate of the clean speech
are calculated by the Multiple Stream MBFE-algorithm of sec-
tion 3.2. Finally, the first and second order time derivatives are
added and the MIDA-algorithm is applied to reduce the features
to 39 dimensions. The front-end modelsλs andλn for speech
and noise are trained on the mel-cepstral features. The pdfs
consist of 256 and 1 single-Gaussian states, respectively,with
diagonal covariance matrices. The noise statistics are obtained
from the first 30 and the last 30 frames of each sentence.

Because of its fast experiment turn-around time and good
baseline accuracy, the speaker-independent LVCSR-systemof
the K.U.Leuven–ESAT speech group, is used as a back-end
recogniser (see [7] for details).

5.1. Number of feature streams

We now explore how the number of feature streams affects the
Word Error Rate (WER). As can be seen from figure 3, the in-
troduction of multiple feature streams(K > 1) gives rise to a
decrease of the WER. This verifies our previous small vocabu-
lary recognition results. However, whenK becomes too large,
also many unlikely state-conditional estimates are passedto the
recogniser, such that the WER increases again. We observe that
the optimal value for the number of streams isK = 6.

5.2. Results

The first reference results (labelled MIDA in table 1) are ob-
tained when no explicit noise reduction algorithm is applied.
Secondly, features are preprocessed by the standard AFE with-
out compression [9]. Thirdly, recognition is performed with
SS-MBFE (using onlŷsMMSE

t ). Finally, we show the recogni-
tion results when MS-MBFE is applied (usinĝsMMSE

t together
with ŝt,1 . . . ŝt,6). In table 1, mic1 and mic2 denote the average
of the first 7 and the last 7 noise conditions, respectively. By
comparing AFE with SS-MBFE, we conclude that SS-MBFE



Aurora4, 16 kHz sampling, no compression, no end pointing; Clean condition training.
Close Talk Far Talk

TEST 01 02 03 04 05 06 07 mic 1 08 09 10 11 12 13 14 mic 2 Avg.

MIDA 4.95 17.97 32.84 39.88 36.67 28.21 38.24 28.39 23.59 39.44 50.68 55.35 56.81 47.30 56.42 47.08 37.74
AFE 5.44 17.88 23.07 27.93 26.86 22.90 24.72 21.26 25.31 35.40 42.26 43.62 46.12 42.14 42.87 39.67 30.47

SS-MBFE 5.10 8.11 18.81 27.05 21.69 20.44 22.64 17.69 19.24 26.13 37.21 41.15 41.38 37.29 39.62 34.57 26.13
MS-MBFE 4.91 7.53 18.16 25.56 20.74 17.47 21.76 16.59 18.14 25.28 35.36 40.13 40.05 34.82 38.56 33.19 24.89

Table 1: Word Error Rates without enhancement, with Advanced Front-End preprocessing, with Single Stream MBFE (K = 0) and
with Multiple Stream MBFE-enhancement (K = 6); Clean condition training.
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Figure 3:Effect of the number of feature streams on the average
Word Error Rate (Aurora4, test 01 . . . 07).

obtains a strong baseline performance with a lower WER for
each of the 14 noise types. On average, SS-MBFE gives a rel-
ative WER-reduction of 14.2% compared to AFE. It is also ob-
served that supplying multiple front-end estimates to the back-
end recogniser, proves to be very successful. MS-MBFE can de-
crease the average WER by another 4.7% relative to SS-MBFE.

6. Conclusions
In this paper we have motivated the need for an improvement of
the linear combination weights in the MMSE-formula. To this
end, we formulated a constrained quadratic optimisation prob-
lem for each back-end Gaussian at each time instant, that was
solved by a gradient descent algorithm. In this way, the deci-
sion over the best clean speech estimate is postponed until more
detailed information is available from the back-end. Because of
the rather large computational requirements, we then proposed
to approximate the solutionK times by a Kronecker delta. In
this case, only(K + 1)-times more Gaussian evaluations are
required, which is still feasible sinceK can be kept reasonably
small. Experimental evidence was given for the similar recog-
nition performance of both approaches on the Aurora2 digit
recognition task. From a computational point of view, Multi-
ple Stream MBFE is clearly preferable.

Also, the MS-MBFE-algorithm was tested on the large vo-
cabulary Aurora4 dictation task. The baseline SS-MBFE was
compared with the Advanced Front-End (AFE) standard and
with the MS-MBFE. The optimal value forK was found to
be 6. Experiments confirmed the superior performance that was

obtained by generating(K + 1) feature streams.
Future work includes the improvement of the dynamic fea-

tures, which are the only timing information available to the
front-end. This would give rise to more accurate posterior prob-
abilities, and hence could further improve our recognitionre-
sults. Other approximations to compute the velocity and accel-
eration parameters of the combined model will be investigated.
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